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Abstract

Skillful seasonal streamflow forecasts obtained from climate and land surface condi-
tions could significantly improve water and energy management. Since climate fore-
casts are updated on monthly basis, we evaluate the potential in developing opera-
tional monthly streamflow forecasts on a continuous basis throughout the year. Further,
basins in the rainfall-runoff regime critically depend on the forecasted precipitation in
the upcoming months as opposed to snowmelt regimes where initial hydrological con-
ditions (IHC) play a critical role. The goal of this study is to quantify the role of monthly
updated precipitation forecasts and IHC in forecasting 6-month lead monthly stream-
flow for a rainfall-runoff mechanism dominated basin — Apalachicola River at Chat-
tahoochee, FL. The Variable Infiltration Capacity (VIC) land surface model is imple-
mented with two forcings: (a) monthly updated precipitation forecasts from ECHAM4.5
Atmospheric General Circulation Model (AGCM) forced with sea surface temperature
forecasts and (b) daily climatological ensemble. The difference in skill between the
above two quantifies the improvements that could be attainable using the AGCM fore-
casts. Monthly retrospective streamflow forecasts are developed from 1981 to 2010
and streamflow forecasts estimated from the VIC model are also compared with those
predicted by using the principal component regression (PCR) model. Mean square er-
ror (MSE) in predicting monthly streamflow using the above VIC model are compared
with the MSE of streamflow climatology under ENSO conditions as well as under nor-
mal years. Results indicate that VIC forecasts, at 1-2 month lead time, obtained using
ECHAMA4.5 are significantly better than VIC forecasts obtained using climatological
ensemble over all the seasons except forecasts issued in fall and the PCR models per-
form better during the fall months. Over longer lead times (3—6 months), VIC forecasts
derived using ECHAMA4.5 forcings alone performed better compared to the MSE of
streamflow climatology during winter and spring seasons. During ENSO years, stream-
flow forecasts exhibit better skill even up to six month lead time. Comparison of the
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seasonal soil moisture forecasts developed using ECHAMA4.5 forcings with seasonal
streamflow also show significant skill at 1-3 month lead time over the all four seasons.

1 Introduction

Skillful seasonal forecasts of streamflow and soil moisture are essential for water man-
agement as well as to support agricultural operations. Previous studies have shown
that application of seasonal streamflow forecasts obtained from climate and land sur-
face conditions could significantly improve water and energy management (Yao and
Georgakskos, 2001; Voisin et al., 2006; Sankarasubramanian et al., 2010; Hamlet
et al., 2002). Seasonal streamflow forecasts derive their skill from slowly evolving cli-
matic conditions, particularly the Sea Surface Temperature (SST) as well as initial hy-
drologic conditions (IHC) such as soil moisture and snow cover (Mahanama and Koster,
2003; Maurer et al., 2004; Wood and Lettenmaier, 2008).

Considerable progress has been made over the last decade in understanding the
role of IHC and climate forecasts in improving the skill of streamflow forecasts. Mau-
rer and Lettenmaier (2003) assessed streamflow predictability in the Mississippi River
basin by developing multiple regression models using observed streamflow, EI Nino
Southern Oscillation (ENSO) indices, and IHC (including soil moisture and snow) and
reported that the role of soil moisture dominated forecasting skill for lead times up to
1.5 months. Shukla and Lettenmaier (2011) quantified the role of IHC as well as ob-
served and climatological forcings (CF) in predicting the runoff and soil moisture over
the continental US and found that climate forcings dominates soil moisture skills over
the Northeastern and Southeastern US.

Streamflow forecasting skill significantly varies across rainfall-runoff and snowmelt-
driven regimes. Maurer et al. (2004) reported that snow in its dry state played a cru-
cial role in streamflow predictability up to 4.5 months lead time in the Western US.
Koster et al. (2010) concluded that in the snow dominated regions, snow water equiv-
alent (SWE) generally contributed to overall streamflow predictability with the role of
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early-season soil moisture in improving streamflow prediction being relatively small.
Initialization of snow also had a greater impact on the overall skill during the spring
melt season in the Northwest US while the contribution of soil moisture is particularly
high in the Southeast (up to 5 or 6 months) during fall and winter (Mahanama et al.,
2012). Mahanama et al. (2012) primarily employed climatology as forcings with up-
dated initial conditions using different LSMs to develop seasonal streamflow forecasts.
In the present study, the main focus is to utilize monthly updated precipitation forecasts
from GCMs forced with forecasted SSTs to develop monthly streamflow forecasts and
also to evaluate their skill against climatological forcings.

Most of studies that developed streamflow forecasts based on land surface mod-
els have used observed or climatological meteorological forcings (e.g., Hamlet et al.,
2002; Maurer and Lettenmaier, 2004; Mahanama et al., 2012), while only fewer studies
have employed retrospective climate forecasts (Luo and Wood, 2008; Luo et al., 2007,
Yuan et al., 2011). Wood et al. (2002) found that IHC played a more critical role than
climate forecasts (CF) in predicting streamflow during the summer of 2000, whereas
both IHC and CF were important in predicting winter streamflow during 1997—1998 ElI
Nino conditions over the Southeastern US. Luo et al. (2007) used bias-corrected cli-
mate forecast from multiple models for predicting streamflow in the Ohio River basin
and found that climate forecast contributed more than IHC uncertainties at long-lead
times of more than one month in predicting the summer flows. Li et al. (2009) pointed
out that initial conditions have dominant effect on forecasting skill over a short-term
lead time (up to 1 month) while climate forcings control forecasting skill at longer lead
times based on two initializations at the beginning of January and July. However, all the
above studies that utilized retrospective climate forecasts for assessing the streamflow
forecasting skill have primarily focused on evaluating the skill in two critical seasons —
summer and winter.

The primary intent of this study is to quantify the role of monthly updated precip-
itation forecasts and initial hydrologic conditions in forecasting 6-month lead monthly
streamflow for a river basin dominated by rainfall-runoff mechanism. Given that monthly
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climate forecasts are issued and updated on a regular basis (Barnston et al., 2003;
Goddard et al., 2003), it is imperative to evaluate the potential in developing monthly
streamflow forecasts on a continuous basis throughout the year, so that the developed
forecasts could be employed for real-time forecasting. Further, basins in the rainfall-
runoff regime critically depend on the forecasted precipitation in the upcoming months
as opposed to snowmelt regimes where IHC play a critical role (Mahanama et al.,
2012). For this purpose, we utilize the retrospective monthly precipitation forecasts
available for a long period (1957-till date) from ECHAM4.5 General Circulation Model
(GCM) (Li and Goddard, 2005). The six-month ahead precipitation forecasts were up-
dated every month based on the updated SST forecasts developed using constructed
analogue method (van den Dool, 1994). Using this long time series of monthly updated
six-month ahead precipitation forecasts, we perform a set of experiments to address
the following research questions related to developing real-time streamflow and soil
moisture forecasts in a rainfall-runoff regime:

1. How does the skill in predicting observed monthly streamflow vary over different
seasons and lead time?

2. How does the skill in predicting monthly streamflow and soil moisture forecasts
vary during EI-Nino Southern Oscillation (ENSO) conditions to normal conditions?

3. What contributes to the variability in the skill in developing streamflow and soil
moisture forecasts?

This study systematically addresses the above questions by utilizing monthly up-
dated climate forecasts from ECHAM4.5 GCM forced with constructed analogue SST
forecasts.

The manuscript is structured as follows: Sect. 2 details study area and retrospective
climate forecasts used in the study. Section 3 provides experimental details on devel-
oping real-time streamflow forecasts with the results and analyses summarized in the
following section. Finally, Sect. 5 presents the summary and findings from the study.
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2 Study area and data
2.1 Study area

Apalachicola River originates in the Appalachian Mountains and it joins the Chatta-
hoochee and Flint Rivers at Chattahoochee, Florida, draining about 44 032 km? through
Georgia, and some parts of Alabama and Florida (Fig. 1a). It is one of the major river
basins in the Southeast United States, where precipitation is pretty uniform resulting in
significant runoff throughout the year. Thus, developing streamflow forecasts on a con-
tinuous basis throughout the year is critical in the region from an operational perspec-
tive as well as for management during critical seasons. For this study, we consider
the entire Apalachicola River at Chattahoochee basin for developing monthly updated
streamflow forecasts over the period 1981-2010. The average annual precipitation in
the basin is about 1280 mm with no seasonality in precipitation and the mean monthly
runoff peaks in March with the lowest monthly flows occurring during the fall (Fig. 1b).

2.2 Observed meteorological and streamflow data

The daily meteorological forcing data for precipitation, maximum and minimum air tem-
peratures, and wind speed from 1951 to 2010 were obtained from Maurer et al. (2002)
at 1/8° spatial scale (~14 km by 12km). The monthly observed streamflow data from
1957 to 2010 was obtained from the US Geological Survey (USGS) at Apalachicola
River at Chattahoochee (site # 02358000). This site is minimally affected by anthro-
pogenic interventions such as reservoir operations as it is included in the Hydro-
Climatic Data Network (HCDN) database (Slack et al., 1993). Since the monthly
streamflow data from the USGS observed streamflow is same as HCDN data during
the overlapping period (1928 to 1988), we have extended the observed daily stream-
flow till 2010 based on the daily observed records from USGS.
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2.3 ECHAMA4.5 precipitation forecasts

Retrospective monthly updated climate forecasts were obtained from the International
Research Institute of Climate and Society (IRI) data library (Li and Goddard, 2005) for
the ECHAMA4.5 General Circulation Model (GCM). ECHAM4.5 GCM was forced with
constructed analogue Sea Surface Temperatures (SSTs) forecasts to develop retro-
spective climate forecasts up to 6 months lead time beginning since January 1957.
Seven ECAHMA4.5 grids were selected that exhibited significant rank correlations with
spatially averaged (monthly) observed precipitation over the study area. For these
seven grids, we averaged monthly time series of the 24 ensembles from ECHAM4.5
precipitation forecasts up to 6-month lead from 1957 to 2010. These forecasts were
downscaled using canonical correlation model to drive the land surface model at 1/8°
spatial resolution. Details regarding the spatial downscaling and temporal disaggrega-
tion are provided in the next section.

3 Retrospective streamflow forecasts development
3.1 Variable Infiltration Capacity (VIC) model

The VIC model (Liang et., 1994, 1996; Cherkauer et al., 2003) is a semi-distributed
macro-scale land surface model that estimates water and energy balance. Streamflow
is computed at the basin outlet using a stand-alone routing model (Lohman et al.,
1998a, b). The details of the VIC model are described in Liang et al. (1994, 1996). The
soil and vegetation input parameters are described in Sinha et al. (2010). The daily
meteorological forcings are described in Maurer et al. (2002).

3.1.1 VIC model calibration and evaluation

The VIC model was first calibrated for the Apalachicola River at Chattahoochee (site #
02358000) at monthly time step from 1951 to 1980 (Table 1) using observed streamflow
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obtained from USGS. The calibration was performed to match overall hydrograph
shape and volume of observed monthly streamflow. Finally, the model was validated
from 1981 to 2010 (Fig. 1b) and the overall Nash—Sutcliff efficiency (NSE) during this
period was 0.81. The monthly NSE was also high for most of the months except during
the low flow months of September to November, where it was relatively low (Table 1).

3.1.2 Spatial downscaling

For each month, precipitation forecasts from 7 ECHAM4.5 grids (~2.8° by 2.8°) over
the Apalachicola River basin at Chattahoochee were used to obtain monthly precipi-
tation time series at 1/8° spatial resolution. Given the forecasts from these grid points
as well as the observed precipitation over 1/8° resolution are correlated, we employed
Canonical Correlation Analysis (CCA) such that the low-dimensional components of
predictors and predictands were used to develop regression models for spatial down-
scaling (Tippet et al., 2003; Oh and Sankarasubramanian, 2011). CCA maximizes inter-
relationships between two data sets in contrast to Principal Component Analysis (PCA)
where variability is maximized within a single data set (Wilks, 1995). For each month,
the following steps were followed to spatially downscale precipitation forecasts:

1. Monthly anomalies (Z) for each of the 251 1/8° grids covering the entire study
area were estimated by subtracting basin’s monthly spatial average precipitation
during 1957 to 1980 (pre-forecast period) from each grid’s monthly precipitation.

2. First six principal components (e.g., yT = Y:, Ys, ..., Yg, dimension = n x 6, where
n =54 yr and “T” denotes transpose) which explained more than 95 % variability
in precipitation anomalies of the 251 grids, were retained from 1957 to 2010 to
reduce the dimensionality and were used as the predictands.

3. Similar to step 2, six principal components were retained from the anomalies of
ECHAM4.5 monthly precipitation forecasts that served as predictors (e.g., X7 =
X, X5, ..., Xg, dimension = 54 x 6).
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4. A CCA model was developed using split sampling approach, where monthly data

from 1957 to 1980 was used for training while monthly precipitation from 1981 to
2010 was predicted using the CCA model. The CCA identified a linear combina-
tion of 6 predictors, X" = aTX, which maximized linear combination of 6 predic-
tands Y* = b'Y. The vectors a and b were chosen such that

(aT 2 Xy b)
Vi@ Sxxa) (b7 3,y b))

was maximized where > denotes the variance-covariance matrix between the
two variables (see details in Wilks, 1995).

. The estimated anomalies were transferred back to the original anomaly space (Z2)

by
ZTV=E«UT

where E is eigenvectors of the anomalies of 251 grids (dimension 251 x 6) and u’
is the transpose of the CCA predicted anomalies (dimension 6 x 54) (see details
in Tippet et al., 2003).

. Finally, the observed monthly spatial mean was added back to the anomalies to

obtain the monthly values from 1981 to 2010 for each of the 251 1/8° grid. For less
than 2 % of the cases among all the 251 grids, the spatially downscaled monthly
precipitation was less than or equal to zero. In those months, a historical minimum
monthly precipitation (during 1957-1980) of 5mm was assigned.

Errors due to spatial downscaling of monthly precipitation forecasts

Errors in spatial downscaling of 6-month lead ECHAM4.5 monthly precipitation fore-
casts to 251 grids at 1/8° spatial scale were evaluated using relative Root Mean Square
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Error (R-RMSE). The R-RMSE, relative to its monthly climatology, was estimated on
the monthly basis using Eq. (1):

\/ z?=1(Pt - Pt)2
P
where t is time in months, n is number of months, P; is observed monthly precipita-
tion, P,’\ = statistically downscaled precipitation (from CCA) and P; is the average ob-
served monthly precipitation (climatology). Figure 2 suggests that the median relative
RMSE at 1-month lead time is higher during fall months specifically during September
through November. This implies that during these months, the variability captured in
spatially downscaled monthly precipitation forecasts is relatively lower in comparison
to observed variability over the 251 1/8° grid cells. The relative errors are lower during

spring and summer months (Fig. 2).

R-RMSE, = (1)

3.1.3 Temporal disaggregation

Daily time series of precipitation was derived from spatially downscaled monthly
ECHAMA4.5 forecasts using the temporal disaggregation technique described in Prairie
et al. (2007). The temporal disaggregation involved classifying forecasted monthly time
series into daily time series by identifying similar monthly conditions in the historical
record based on K-Nearest-Neighbor (K-NN) approach. A brief description is provided
here for clarity. For further details of the K-NN approach, see Prairie et al. (2007). Typ-
ically, K-NN approach resamples monthly data from daily historic data, generating val-
ues that were observed. In this study, K-NN approach was implemented (Prairie et al.,
2007) where K-nearest neighbors were obtained by computing the distance between
predicted time series (from CCA) and the historic series during 1951-1980. The ob-
served daily values from the “K” neighbors were resampled based on Lall and Sharma
kernel (Lall and Sharma, 1996). The number of neighbors for each month was chosen
based on leave-five out cross-validation during the training period 1951-1980.
5234

HESSD
9, 5225-5260, 2012

Evaluation of
operational seasonal
streamflow forecasts

T. Sinha and
A. Sankarasubramanian

Title Page
Abstract Introduction
Conclusions References
Tables Figures
1< >l
< >
Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/9/5225/2012/hessd-9-5225-2012-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/9/5225/2012/hessd-9-5225-2012-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

3.1.4 Land surface model implementation

Figure 2 illustrates the experimental set up for streamflow forecasts development using
the VIC model. The implementation of the VIC model was performed in the following
ways: (i) the VIC model was driven using observed meteorological forcings data from
1975 to 2010 in order to estimate initial soil moisture conditions prior to each month
of forecasting period (1981-2010); (e.g., to forecast streamflow in January 1981, initial
soil moisture conditions at the end of December 1980 were updated to force the VIC
model); and (i) the statistically downscaled and temporally disaggregated monthly pre-
cipitation forecasts (at daily scale) from January 1981-December 2010 with lead time
of 1 to 6 months were used to drive the VIC model with updated initial land surface
conditions estimated from (i). Since the primary objective of this study is to analyze
the role of initial soil moisture and precipitation forecasts, other input variables such
as maximum and minimum air temperatures and wind speed were used from the ob-
served 1/8° meteorological forcings during the forecasting period. To compare the skill
in developing streamflow forecasts using retrospective precipitation forecasts, we also
utilized climatological forcings by forcing the VIC model with the daily climatological
(daily precipitation during 1957 to 1980) forcings with updated initial land surface con-
ditions using the Ensemble Streamflow Prediction (ESP) approach (Day, 1985; Franz
et al., 2003). For both these schemes, ECHAM4.5 forecasts and climatology, predicted
streamflow was routed at the basin outlet for each set of VIC model simulations. The
routed streamflow at the basin outlet were bias corrected on monthly basis based on
the VIC model calibration summary (Table 1). Thus, for each year, streamflow en-
semble developed using climatological ensemble was averaged to evaluate the per-
formance measures (discussed in Sect. 4). Thus, the final product from the VIC model
was bias-corrected six-month ahead monthly streamflow forecasts from January 1981
to December 2010 obtained using precipitation forecasts (VIC;.;) and for climatology
(VICcIim)-
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3.2 Principal component model — implementation

Streamflow forecasts were also developed using statistical models for comparing
the skill of VIC model in predicting the monthly streamflow. Under statistical mod-
eling approach, Principal Component Regression (PCR) was developed between
the forecasting month’s streamflow (predictand) and monthly forecasts from the se-
lected ECHAMA4.5 grids along with previous month’s streamflow (predictors). PCR,
otherwise known as Model Output Statistics (MOS), recalibrates the GCM forecasts
over a larger area or correlated predictors into orthogonal components for estimat-
ing streamflow (Landman and Goddard, 2002; Sankarasubramanian et al., 2008). The
monthly time series from 1957 to 1980 were used as training period with predictions
being made from 1981 to 2010. For predicting streamflow at 1-month lead time, ob-
served streamflow from previous month was used with ECHAM4.5 precipitation fore-
casts to predict current month’s streamflow. For subsequent lead times (2—6 months),
PCR predicted streamflow for the previous month (CA?M) and precipitation forecasts
(fest) for the corresponding month were used as predictors. Thus, for each month, six
PCR models were developed under each lead time scheme using the climate pre-
dictability tool available from IRI (http://portal.iri.columbia.edu/portal/server.pt?open=
512&0bjlD=697&PagelD=7264&mode=2). Skill obtained from the PCR model is com-
pared with the skill obtained for each month using VIC;.; and VIC;,, over the period
1981-2010.

3.2.1 Forecast skill scores

The performance of VIC model and the PCR model in predicting monthly/seasonal
streamflow was evaluated using Spearman rank correlation and Mean Square Skill
Score (MSSS) (Wilks, 1995). The spearman rank correlation was tested for its sta-
tistical significance by checking whether the estimated correlation is greater than
1.96/vn -3, where n denote the number of observation and forecasts pairs. MSSS
was also estimated for each month/season using:
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MSSS = 1 - [(Mean Square Errory,ecast)/(Mean Square Errorgimatoiogy)] (2)

where Mean Square Error (MSE);,ccast IS the average squared difference between the
forecast and observations pairs, and MSE imatoi0gy IS the averaged squared difference
between the observations and the climatological streamflow. The climatological esti-
mates of streamflow are obtained by averaging the observed streamflow over 1957—
1980. If MSSS is greater than zero, it indicates forecasts have better skill than climatol-
ogy. Two forecasts from VIC (VIC;.; and VIC;,,) model are compared with PCR model
at monthly and seasonal time scales using spearman rank correlation and MSSS. Im-
provements in MSSS of VIC;; over VIC;,, quantify the fractional reduction in mean
squared error (MSE) in predicting the observed flows by utilizing the ECHAMA4.5 precip-
itation forecasts. Similarly, positive MSSS of VIC;,, quantifies the fractional reduction
in MSE that could be obtained using initial hydrologic conditions over the observed
streamflow climatology.

4 Results and analysis

xIn this section, we present the skill of monthly streamflow forecasts developed us-
ing VIC model during 1981-2010 as well as over the ENSO years. We also compare
this skill with the forecasts developed using climatological forcings as well as with the
forecasts developed using PCR. Following that, we present rank correlations between
VIC model forecasted total soil moisture and observed streamflow at multiple locations
along with the spatial variability in the forecasted soil moisture during La Nina years.

4.1 Performance of six-month ahead monthly streamflow forecasts

Skill scores, rank correlation and MSSS, for six-month ahead monthly streamflow fore-

casts from the VIC model with ECHAM4.5 and climatology forcings are shown in Figs. 4

and 5 along with the skill from the PCR model. Panels a—f in both figures indicate the
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lead time and the x-axis indicate the month for which the skill is assessed. For instance,
the skill under Fig. 4f for the month of October indicates the ability of the forecasting
scheme to predict October flows based on the initial conditions prior to May and using
the six-month ahead monthly precipitation forecasts issued in May for the month of
October. At 1-month lead time (Fig. 4a), all the forecasting schemes exhibit statistically
significant skill in predicting the observed streamflow over the entire year. The only ex-
ception is in September during which VIC model forced with ECHAM4.5 forecasts did
not produce statistically significant forecasts. Comparing the performance of the three
forecasting schemes, we infer that VIC model based forecasting schemes perform bet-
ter than PCR forecasts in almost all the months with the exception being February and
October. The performance of VIC;,; (ECHAM4.5) and VIC;,, is almost similar in all
months except during fall months. One possible reason for the poor performance of
VIC;; is due to the model’s inability to predict the low flow season (Fig. 1b), during
which the model exhibited significant bias (Table 1). Further, the relative RMSE of the
downscaled precipitation forecasts is also significantly higher during the fall months
(Fig. 3).

Based on MSSS (Fig. 5a), VIC;.; developed using ECHAMA4.5 performs better than
VICm in almost all the months except during September—December. Though both
VIC model based forecasts have similar correlation at 1-month lead time (Fig. 4a),
ECHAMA4.5 forcings result in reduced mean squared error (MSE) in prediction as com-
pared to the MSE of VIC forecasts obtained with climatological forcings. The skill of
VIC,, also quantifies the reduced MSE arising from updating initial hydrologic con-
ditions in the VIC model. Given that MSSS is computed in relation to the MSE of
streamflow climatology, MSSS basically quantifies the percentage reduction in MSE
of climatology resulting from the forecasting scheme. Thus, except during the months
of November and December, streamflow forecasts developed from the VIC model with
climatological forcings provide better streamflow predictions than using observed cli-
matology of streamflow. In comparison to the VIC-model based forecasting schemes,
the performance of PCR model is generally inferior in most of months with the exception
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being February and October. This implies that PCR model captures only variability, but
the errors in predicting the observed streamflow are relatively higher than the errors of
the VIC model.

For lead times 2 to 4 months (Figs. 4b—d and 5b—d), PCR model performed poorly
indicating almost no skill in predicting streamflow beyond 1 month. The computed cor-
relation for PCR model is statistically significant only in fewer months. However, VIC;_;
and VIC;,, capture the variability in the streamflow with significant correlations in pre-
dicting the observed streamflow in all the months except during October and Novem-
ber. Evaluating the performance of these two schemes based on MSSS also show that
VIC;.; performed slightly better than VIC;;, in the winter and spring seasons. During
the rest of the months, none of the forecasting schemes showed significant reduction
in MSE compared to the MSE of climatology. Beyond 4 months, only VIC;.; showed
significant skill in capturing the interannual variability in streamflow during the spring
season (Fig. 4e—f), but the MSSS is still below zero at lead times of 5 and 6 months.
The primary reason for improved performance during spring months is due to smaller
interannual variability in precipitation during those months. We discuss this issue in de-
tail under discussion (Sect. 5). The significant correlation under 5—6 months for VIC;.;
during spring season primarily indicates the importance of using precipitation forecasts
as forcings as opposed to using climatology as a forcing.

To recapitulate, six-month ahead streamflow forecasts issued using VIC;; and
VIC i, have higher skills than that of the PCR model in almost all the months. Sim-
ilarly, VIC;.; perform better than VIC;, in almost all the seasons except during the
fall. The primary reason for the poor performance during the fall months is due to the
poor skill in downscaled precipitation forecasts as well as due to the VIC model’s in-
ability to simulate low flows. The low MSSS of VIC;,, (lesser than zero) beyond one
month (see Fig. 5), indicates that initial soil moisture conditions are useful only up to
a month in reducing the MSE in predicting the observed flows that could be obtain-
able using streamflow climatology. The improved performance of VIC;; over VIC;,
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indicates the importance of precipitation forecasts in developing skillful monthly stream-
flow forecasts.

4.2 Source of skill for ECHAMA.5 forecasts — ENSO conditions

Given that streamflow forecasts developed using ECHAM4.5 forecasts performed
better in almost all the seasons except the fall, we investigate the source of skill
for ECHAMA4.5 precipitation forecasts in relation to ENSO conditions. Since ENSO
is one of the dominant climatic modes that influence the winter hydroclimatology
of the Southeast US (Ropelewski and Halpert, 1987; Devineni and Sankarasubra-
manian, 2010), we evaluate the skill of streamflow forecasts conditioned on ENSO
modes. For this purpose, we consider the Nino3.4 index which was obtained from
the National Weather Service Climate Prediction Center (http://www.cpc.ncep.noaa.
gov/products/analysis_monitoring/ensostuff/ensoyears.shtml). Nino3.4 denotes the av-
erage SST anomalies over 5°N to 5°S and 120° to 170°W in the tropical Pacific
with positive (negative) anomalous conditions denoting El Nino (La Nina). EI Nino (La
Nina) conditions were identified for each forecasting month if the past 3-month average
Nino3.4 was above the threshold of >0.5°C (< —-0.5°C). For each month, the skill of
VIC;.st was compared with the skills of VIC;,,, and PCR predicted flows during ENSO
and non-ENSO years.

Figure 6 shows the rank correlation for the three forecasting schemes over six
different lead times based on ENSO conditions. At 1-month lead time, VIC;.; and
VIC,;, forecasts are statistically significant in predicting the observed flows in almost
all months. The only exception is VIC;.; being not significant in September. Comparing
the correlations in Fig. 6 with Fig. 4, we understand that the skill is almost similar for
all the months except during October-December (OND) at 1-month lead time. Under
OND, the ability to predict the observed flows is slightly higher under ENSO conditions
for 1-2 months lead forecasts. This is because ENSO conditions typically peaks around
OND. On the other hand, the performance of the PCR model is statistically significant
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for 1-month lead time for the period July—March. For the rest of the lead times, PCR
model’s skill is statistically significant only on February/March.

For 3—6 months lead times, VIC model based forecasts show statistically significant
skill only for the forecasts issued during spring (i.e., predicting the summer flows). For
forecasts issued in the rest of the months, VIC model based forecasts did not show
statistically significant skill. However, the performance of VIC model in issuing 3—4
month lead forecast is good for all the months over the entire validation period (Fig. 4).
We also observe that the performance of VIC;; is slightly better for forecasts issued
in the spring compared to the skill of VIC ;.

To further understand the role of ENSO in improving the prediction of monthly
streamflow forecasts, we plot (Fig. 7) the MSSS for VIC forecasts under
ENSO (VICicst ensos VICqim.enso) @nd normal tropical Pacific conditions (VICicst norm>
VICim_norm) OVer various lead times. Under ENSO conditions, the skill of VIC model
forced with ECHAMA4.5 precipitation forecasts (VIC;.g enso) iS better than the skill of
VIC im.enso fOr the forecast issued during February to May as well as during July-
August under one-month lead time. However, VIC i, enso P€rfOorms better during the
fall months. This indicates that the one-month forecasts obtained using ECHAM4.5
precipitation forecasts primarily derive its skill from ENSO during winter months. During
normal ENSO times, ECHAMA4.5 precipitation forecasts based streamflow predictions
(VICscst norm) issued during the winter season perform better than VIC i, norm, Whereas
climatology based streamflow forecasts issued during the summer season perform bet-
ter than VIC;. norm- This is again consistent with the earlier findings of Devineni and
Sankarasubramanian (2010) indicating the skill of precipitation forecasts being signifi-
cant during ENSO occurrences.

For longer lead times (2—-6 months), under ENSO conditions, VICi. enso @nd
VICim.norm indicated positive MSSS for the forecasts issued during January—March
and July, respectively. The two other candidates, VIC i, enso @Nd VICicgt norm did not
show positive MSSS in most of the months. Thus, our analyses of splitting the
MSSS shown in Fig. 7 clearly indicate that ECHAM4.5 precipitation forecasts based
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streamflow forecasts issued during the winter season perform well under all lead-times
during ENSO conditions, whereas the performance of forecasts is good during fall
months only up to 1-2 month lead time under ENSO conditions. Under neutral ENSO
conditions, both VIC;st norm @nd VICim norm €Xhibit good skill for forecasts issued with
a shorter lead time (1-2 months), whereas both ECHAM4.5 and climatology forcings
did not exhibit any significant skill for streamflow predictions issued with a longer lead
time. Based on this understanding, we extend our analyses for developing 6-month
ahead soil moisture forecasts.

4.3 Skill of monthly soil moisture forecasts

The VIC model simulated spatially averaged soil moisture in the top 90 cm soil layer
over the two sub-basins are compared with the USGS observed streamflow: (a) Flint
River at Newton, GA; and (b) Apalachicola River at Chattahoochee, FL (Fig. 1a). The
rank correlations over different seasons indicate a strong relationship between spa-
tially average soil moisture and observed seasonal streamflow over the two sites. As
expected, the correlations are relatively lower at higher lead time (Table 2). The skill
in predicting soil moisture is highest at 1-month lead time. Among all the seasons,
spring season (April-June) exhibits the highest correlations followed by summer sea-
son (July—September) for the two Rivers. The Apalachicola River shows statistically
significant correlations over all the four seasons during lead times up to 6 months. On
the other hand, the Flint River shows significant correlations up to lead time of 3 months
after which the correlations behave differently over different seasons. For instance, the
correlations are lower for the Flint River during winter (January—March) at lead time
greater than 3 months. Therefore, the results of VIC model forecasted soil moisture
aggregated over all the seasons are reasonably well up to 3 months lead time.
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4.4 Average soil moisture forecasts and anomalies

The VIC model 1-month lead monthly streamflow forecasts show good skills during
spring and summer months which are crucial for agricultural operations. Figure 8 in-
dicates spatial variation of total soil moisture content in the top 90 cm of soil surface
as simulated by the VIC model. The spatial plot of soil moisture climatology (Fig. 8g—I)
indicates that soil moisture is lowest in the central regions of the study area. Total soil
moisture availability decreases as we move from April to September due to increased
evapotranspiration. Soil moisture forecast anomalies were estimated by subtracting to-
tal soil moisture during La Nina years by soil moisture climatology during 1981 to 2010.
Thus, positive values indicate deficit during La Nina years from climatology. Typically,
the La Nina climatic oscillations lead to cool and dry conditions over the study area.
During the La Nina conditions, southern regions in the study basin are relatively drier
during July to September while northern and north-western regions are relatively wet-
ter. The most pronounce effect of La Nina conditions occurs in June and August, which
are relatively drier than other months in the growing season.

5 Discussion and concluding remarks

This study focuses on quantifying the utility of monthly updated precipitation forecasts
and the role of initial soil moisture conditions in developing monthly streamflow fore-
casts. We focused on a rainfall-runoff dominant basin — Apalachicola River at Chat-
tahoochee, FL — located in the Southeastern US. We calibrated the VIC land sur-
face model to monthly observed streamflow for the study area and then forced the
model with: (a) statistically downscaled and temporally disaggregated 6-months lead
ECHAM4.5 precipitation forecasts, and (b) ensemble of daily climatology estimated
over 1957—-1980. Under both cases (a) and (b), the initial soil moisture conditions were
updated prior to the forecasting period. Thus, the difference in skill between the two
forecasting schemes quantifies the improvements or potential degradation in skill that
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could be attributable to the precipitation forecasts obtained from the GCM. In addition,
statistical models were also used to compare the forecasting skill over different lead
times up to 6 months. This section provides discussion related to the three questions
proposed in the introduction (Sect. 1).

5.1 Skill variations over various seasons and lead time

Results from Figs. 4 and 5 suggest that at one-month lead time monthly streamflow
forecasts developed using precipitation forecasts have better skill in predicting ob-
served streamflow during winter, spring and summer seasons, whereas monthly fore-
casts developed using climatological forcings have better skill during the fall season.
These results are in agreement with Luo et al. (2007) and Li et al. (2009) who reported
that downscaled climate forecasts outperformed ESP approach for 1-3 months lead
time. In particular, land surface modeling streamflow forecasts were relatively poor
during late summer (September) and fall months (September—December). The poor
performance of precipitation forecasts during the fall season is partly due to high R-
RMSE in the precipitation forecasts. However, one-month ahead streamflow forecasts
developed using the statistical model performed better than VIC;,, during the fall sea-
son. This indicates that the poor performance could be due to the limited ability of
VIC model in simulating flows (see Table 2 NSE is low) or due to the error arising from
spatial downscaling and temporal disaggregation. This requires further investigation. At
2—6 month lead times, streamflow forecasts developed using the precipitation forecasts
showed better correspondence (i.e., correlation) in matching the interannual variability
of observed flows, but all the three forecasting schemes performed poorer than clima-
tology in terms of accuracy (i.e., MSSS < 0). Thus, the streamflow forecasts developed
using GCM precipitation forecasts capture the variability better for longer lead times,
but fails to reduce the mean square error. However, the uncertainty over the longer lead
times could be reduced by continuously updating the monthly streamflow forecasts as
we progress through the season (Sankarasubramanian et al., 2008).
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5.2 Role of ENSO conditions

By analyzing the skill of the three forecasting schemes under ENSO conditions, stream-
flow forecasts developed using ECHAM4.5 precipitation forecasts show higher skill for
the forecasts issued during winter, spring and summer seasons over 1-4 month lead
time (Fig. 4), whereas the streamflow forecasts developed using climatology forcings
have better skill for the fall season. Thus, under ENSO conditions, we see better abil-
ity to predict observed streamflow over a longer lead time. Further, our analyses of
splitting the MSSS (Fig. 7) based on ENSO and normal conditions clearly show that
ECHAMA4.5 precipitation forecasts based streamflow forecasts issued during the winter
season perform well up to six-month lead time under ENSO conditions. However, this
skill (i.e., positive MSSS) to predict streamflow over a longer lead time decreases sub-
stantially under normal ENSO conditions, where streamflow forecasts developed using
the GCM precipitation forecasts perform better only up to 1-2 month lead time. On the
other hand, streamflow forecasts developed using climatology based forcings perform
better in terms of MSSS for the forecasts issued during fall months with 1-2 month lead
time under ENSO conditions. Under normal ENSO conditions, in general, the MSSS
is negative for longer lead times for both ECHAM4.5 and climatology forcings indicat-
ing the limited skill in predicting the observed streamflow. Thus, this analysis provides
critical information that during ENSO conditions, we not only have better skill in pre-
dicting the observed streamflow using precipitation forecasts from GCMs, but also gain
increased lead time in predicting the observed flows.

5.3 Difference in skill variations in streamflow and soil moisture forecasts

Our previous discussion suggest that the primary source of variability in the skill on pre-
dicting streamflow arises from ENSO conditions. Given that we don’t have observed
soil moisture information, we compared the seasonal soil moisture forecasts to the
observed seasonal streamflow. The VIC model soil moisture forecasts compare rea-
sonably well with the observed streamflow at two sites particularly up to 1-3 months
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lead time. VIC model soil moisture climatology suggests that April is the wettest while
September is the driest month in the growing season. During La Nina conditions, the
drying effect is more pronounced in June and August months. The correlation between
the soil moisture forecasts for the winter and spring seasons and the corresponding ob-
served seasonal streamflow increase as the drainage area increases. On the contrary,
the correlation between the soil moisture forecasts for the summer and fall seasons
and the observed streamflow decrease as the drainage area increases. This is pri-
marily due to the increased role of temperature during the summer and fall seasons
leading to enhanced evapotranspiration over a larger area resulting in decreased cor-
relation with streamflow.

Climate forecasts from the ECHAM4.5 GCM along with the updated initial conditions
provide useful information which can be utilized in improving the management of water
and energy systems. This study quantified the additional skill that could be gained using
precipitation forecasts from ECHAM4.5 forecasts over the climatological forcings. This
study uses precipitation forecasts from one GCM; however, combining climate informa-
tion from multiple models has been shown to result in improved streamflow forecasts
(Devineni et al., 2008). The climatological forcings were run as ensemble and the mean
of the streamflow ensemble was used to quantify the skill. Similarly, effort should be
focused on representing the precipitation forecasts as ensemble to develop streamflow
forecasts. Given the amount of computation time required to run the VIC model, we re-
sorted to using the mean of the precipitation forecasts at 1/8° spatial resolution to run
the land surface model. Further, it also needs to be analyzed how spatial downscaling
and temporal disaggregation contributes to the limited skill during the fall season since
the statistical model seems to outperform both VIC model based forecasting schemes.
Since basins in the Southeastern US have no seasonality in precipitation, it is also
important to understand the source of error arising from downscaling and disaggrega-
tion scheme. We intend to address these issues as part of our continuing research on
developing operational streamflow forecasts over the Southeast US.
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Table 1. VIC model calibration summary for the period 1951-1980. NSE represents Nash-

Sutcliffe Efficiency.

Month NSE Rank Correlation % Bias RMSE
Jan 0.80 0.93 8.0 5474.8
Feb 0.68 0.94 16.8 7669.4
Mar 0.66 0.95 16.5 9251.6
Apr 0.89 0.95 8.1 5713.6
May 0.86 0.87 -0.2 3996.8
Jun 0.72 0.87 -8.4 3654.3
Jul 0.40 0.75 -1.7 3839.1
Aug 0.62 0.84 -9.0 32875
Sep -1.70 0.43 -12.5 48405
Oct 0.57 0.82 -10.8 4207.0
Nov 0.18 0.67 -16.1  4668.9
Dec 0.81 0.87 -1.3 4316.7
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Table 2. Rank correlation between seasonal soil moisture forecasts and seasonal observed
streamflow at (a) Flint river at Newton, GA; and (b) Apalachicola River at Chattahoochee, FL.
Locations of these sites are shown in Fig. 1a. The values in bold represent correlations that are

statistically insignificant (< 0.38).

Sub-basin

Drainage area
(km?)

Lead
(months)

JFM

AMJ

JAS

OND

(a) Flint

(b) Apalachicola

14694

44032

CURWN—=OT NN =

0.79
0.59
0.45
0.31
0.35
0.30
0.84
0.71
0.56
0.53
0.52
0.45

0.88
0.89
0.73
0.66
0.71
0.68
0.85
0.87
0.76
0.71
0.80
0.81

0.87
0.90
0.74
0.55
0.44
0.34
0.75
0.82
0.73
0.61
0.58
0.46

0.76
0.84
0.69
0.58
0.57
0.58
0.64
0.70
0.64
0.55
0.58
0.61
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Fig. 1. Location of the Apalachicola River at Chattahoochee, FL (a) and Observed (Obs) and
VIC model simulated (Sim) streamflow seasonality (b) for the VIC model evaluation period of
1981-2010 at USGS gauging station 02358000. (b) also shows the Nash-Suicliff efficiency

(NSE) and % bias over the entire evaluation period.
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I 6-month lead ECHAM4.5 monthly precipitation forecasts (Jan 81 —Dec 2010) I

!

| Spatial (CCA) downscaling of 6-month lead monthly precipitation forecasts (Jan 81 —Dec 2010) |

!

Temporal (K-NN) disaggregation (Prairie et al., 2007)

|

Daily PRCPat 1/8°(Jan 81 — Dec 2010)

|

Update soil moisturein 3 VIC layers
prior to forecastingmonthusing 1/8°
daily observed PRCP, TMAX, TMIN,
and WIND data (Jan 81 —Dec 2010)

Calibrated VIC model

Routing model

I 6-month lead monthly streamflow forecasts (Jan81 —Dec 2010) I

l

I Skill evaluation of 6-monthlead monthly streamflow forecasts using observed flows I

Fig. 2. Experimental design to develop monthly updated 6-month ahead monthly streamflow
forecasts. CCA refers to Canonical Correlation Analysis and K-NN represents Kernel-Nearest
Neighbor approach. PRCP refers to precipitation, TMAX to maximum air temperature, TMIN to

minimum air temperature, and WIND to wind speed.
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Fig. 3. Box plots of relative Root Mean Square Error in spatial downscaling of 1-month lead

ECHAMA4.5 monthly precipitation forecasts for 251 1/8° grid cells.
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Fig. 4. Spearman rank correlations between estimated streamflow and observed streamflow
at lead times 1 (a) to 6 (f) months. The horizontal gray line (at 0.38) indicates statistically
significance correlation at 95 % confidence interval. VIC;,, and VIC, represent VIC model
estimations when forced with ECHAMA4.5 monthly precipitation forecast and daily climatology,
respectively. PCR (Ot_1, fcst) represent Principal Component Regression based on PCR with
updated initial conditions (updated previous month’s streamflow for subsequent lead times).
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Fig. 5. Mean Square Skill Score comparison of estimated streamflow at lead times 1 (a) to 6

(f) months.
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Fig. 6. Similar to Fig. 4, but the skill evaluated only for ENSO conditions.
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